If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5k^2+22k+12=0
a = 5; b = 22; c = +12;
Δ = b2-4ac
Δ = 222-4·5·12
Δ = 244
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{244}=\sqrt{4*61}=\sqrt{4}*\sqrt{61}=2\sqrt{61}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-2\sqrt{61}}{2*5}=\frac{-22-2\sqrt{61}}{10} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+2\sqrt{61}}{2*5}=\frac{-22+2\sqrt{61}}{10} $
| 12x-7x+1=7+2x | | (3a+2)(a-3)=(a-3)(a+4) | | -3t(t-8=0 | | 2v^2+4v-1=0 | | 8-2x=10+3 | | F(-48.4)=11(x-8) | | 0=2+6t-4.8t^2 | | 4^x+1=5^2x+1 | | 2-(3x+1)3=2(7-6x) | | 2-(3x+1)3=2(7-6x | | 5x+2.5-x=10 | | 4a-2a+5=3a-7 | | 21x-73=12x-28 | | -2g+10=20 | | 3y-15=25 | | -5y+4=19 | | 4(x+2)=16+2(x-1)( | | 4(x+2)=16+2(x-1( | | -0.13-0.004x=-0.49 | | x+2x-21+90=180 | | 3/5x+24=48 | | 5(2x+3)-2(3x-4=31 | | 3(5k-1)=7(k+3) | | 10(a-1)=4(2a+3) | | 8(y+2)=3(y-3) | | 3+7x=2(6x-1) | | 4(3x+1)=7x-11 | | 5(2x+3)=5x+4 | | 8q+7=81-4q | | 8x-2x=4x | | x+2=4x-30 | | 6x-26=5x+6 |